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Retrospectives on My Studies of Solid Mechanics (II) 
- a new energy method based on the stationary principle of total energy – 

By Tadahiko Kawai + and Etsu Kazama ++ 
ABSTRACT 
A new energy method is proposed in this article basing on the stationary principle of total 
energy introduced in the previous article. 
As the first example of verification studies in-plane bending of a cantilever plate due to vertical 
tip shear is analyzed by the new energy method proposed: 
 
1. A simple, but elaborate solution on the in-plane bending of a cantilever plate 
This is one of fundamental problems in the strength of materials for structural engineers and 
professor S.P. Timoshenko gave a very simple and yet elaborate solution to this problem in his 
cerebrated textbook on the theory of elasticity (1), (2). 
 
His solution is summarized as follows: 
（１） governing equilibrium equation: 
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where (u (x,y), v (x,y)) is the unknown displacement vector of a cantilever plate and (fx, fy) are 

non-dimensional intensities of the body force vector (X,Y): 
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E: Young modulus, ν: Poisson’s ratio 
the associated boundary conditions are given as follows: 

  

x = 0 : clamped edge u(0,y) = 0,!(0,y) = 0

y = ±c : free edge " xy (x,±c) = 0,# y (x,±c) = 0

x = l : loading edge # y (l,y) = 0
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Fig.1 In-plane bending of a cantilever 
due to a boundary shear P 
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To solve this problem, he replaced the clamped edge condition: u (0,y)=ν(0,y)=0 
by 

    

  

u(0,0) = !(0,0) =
"u

"y
(0,0) = 0 …………………………………..(3) 

This is, the plate is fixed only at the origin. 
Professor Timoshenko assumed first the following stress field of a given cantilever plate: 
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and integrating the associated strains, he derived the following solution for displacement field of 
a given cantilever plate: 
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where 

  

I =
2

3
tc
3  is the moment of inertial about z axis, t is the plate thickness. 

This solution represents the bending behavior of a cantilever beam with the effect of shear 
deformation so nicely that it has been accepted to use as a standard solution for bench mark 
testing of in-plane finite elements. However, it should be emphasized hat eq (5) is the exact 
closed form solution under the simplified clamped edge condition eq (3), but it is only one of 
approximate solutions of the resent problem. 
 
2. Is convergency of CST element really poor in the bending analysis of a cantilever? 
It is generally recognized since 40 years ago that the Constant Strain Triangular element is the 
standard finite element for analysis of plain elasticity problems, but it exhibits very poor 
convergency to the solution given by professor Timoshenko as shown in Fig.2 (3),(4),(5). 
I could hardly believe such poor convergency as shown in Fig.2 of the CST element which gave 
usually satisfactory results for our general plane stress analysis. 
In my early days of the FEM development, I attempted to clarify the reason why in vain. 
About 30 years passed without substantial progress in my research on this problem and since a 
few years ago I challenged one more to obtain the accurate solution using Energy Method with 
the following displacement function. 
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Eqs (6) satisfies completely the clamped edge conditions given as u (0,y)=ν(0,y)=0: 
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Fig. 2 Discrepancy of the FEM solution using CST elements and Timoshenko’s solution on the 

in-plane bending of a cantilever plate. (aspect ratio=5) 
 
I expected to obtain the better approximate solution easily well known Rayleigh-Ritz’s 
procedure. Unfortunately, however, I could not derive a reliable solution by this method wasting 
much time again. Because the approximate solution oscillates no matter how many times may be 
taken even in the displacement computation. Quite recently, I have been convinced that it might 
be due to existence of stress singularities at both corners of the clamped edge. This suggests the 
rigorous clamped edge condition u (0,y)=ν(0,y)=0 is too difficult to satisfy.  
Therefore, it is not generally possible to derive the exact solution because stresses become 
unbound at corners of the clamped edge even in the elastic range of the deformation and 
therefore one should be satisfied with the approximate solution. As a result of this study, it can 
be concluded that Timoshenko’s solution is important from the viewpoint of beam theory, but it 
is not adequate to use it as the standard solution for the bench mark testing of in-plane finite 
elements if the aspect ratio l/2c is less than 5. 
 

(ii) mesh divisions used in FEM analysis (iii) comparison of calculated deformation 
and bending stress 

Bending Stress 
D

eflection 

t=1mm 

E=21000kg/mm2 

20mm 

100mm 

(a) 40 elements 

(b) 2000 elements (2121nodes) 

100m
m 

(a) 40 elements 

1kg 

(b) 2000 elements 

(i) dimensions and material constants  

20mm 
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3. My challenge on the restoration of the FORCE METHOD 
So I was obliged to find a rigorous of this problem for bench mark testing of plain finite 
elements, and I changed my solution procedure to the stress function approach. 
This problem was analyzed recently using the unified energy method explained the previous 
article. Finite element analyses were conducted using the following non-equilibrium 
displacement function, NDOF of which is 16 as follows: 
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when 
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0
) is the rigid body displacement vector of a given element, and 

  

!xo,!y0," xy )(  is 

the constant strain vector of the same element. 

For the equilibrium displacement functions of same NDOF is also derived using 4th order 
polynomial of z for 

  

!(z) and 

  

!(z)  of the following Goursat’s stress function. In brief 

  Airy’s stress function F(x,y) = Re
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A solution obtained using nonequilibrium displacement function is shown by the curve -■-, 
while the other solution using the equilibrium displacement is shown the curve -◆- in this 
figure. Fig.3 show the convergency of the calculated displacement νA and stress ρB 
respectively. It can be seen the curves -■- gives always the upper bound solution for bothνA 
andρB , on the other hand, the curve -◆- gives the lower bound solution clearly. 
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Figure 3: In-plane bending analysis of a cantilever plate subjected to a boundary shear of 
parabolic distribution (divided by square mesh) 

6. Conclusions 
（１） The elastic bending of a cantilever does not exist because of the singularities at the both 

corners of the clamped edge. Therefore one should be satisfied with the approximate 
solution. (See Fig.2) 

（２） Restoration of the FORCE METHOD was demonstrated using the stress function 
approach on the in-plane bending of a cantilever plate due to a boundary shear. 

Mesh Div.x 
NDOF 

stress 
function used 

displacement 
function 

used 
4x2x16 61.4766 51.0777 
8x4x16 60.0641 56.1607 

12x6x16 60.0287 58.1254 
16x8x16 60.0138 58.8946 

20x10x16 60.0071 59.2698 

Mesh Div. x 
NDOF 

stress 
function used 

displacement 
function 

used 
4x2x16 117195 9.4399 
8x4x16 11.4996 10.5163 

12x6x16 11.4347 10.9196 
16x8x16 11.4063 11.0912 

20x10x16 11.3909 11.178 
D.O.F 

2nd order displacement function used 

D.O.F 

4th order Goursat’s stress function used 
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Timoshenko 
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P 

2nd order displacement function used 

4th order Goursat’s stress function used 

Timoshenko 
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（３） The following variational theorems are confirmed by analysis of this cantilever bending 
problem. 
(i)  Displacement Method gives the upper bound solution for the stresses,  
    hence the lower bound solution for the displacement. 
(ii)  Force Method gives the lower bound solution for the stresses,  
    hence the upper bound solution for the displacement. 
(iii) Therefore, the true displacement solutions must lei inbetween the DM and FM 
    solutions. 

（４） The elaborate solution for the cantilever problem by professor Timoshenko is indeed 
correct from the viewpoint of beam theory, but is not correct from the point of in-plane 
bending of a cantilever plate. Therefore it can be concluded that Timoshenko’s solution 
is not adequate to use the standard solution for bench mark testing of in-plane FEM 
elements within the aspect ratio less than 5. 

 
Acknowledgement 
The author would like to express heartful thanks to Mr. Masahiko Kohnosu, manager of the 
ACT Co., Ltd and Mr. Mitsunari Kitayama of the Nagano Collage for their efforts showed in the 
course of the present paper preparation. 
 
References 
1. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, THIRD EDITION, 

McGraw-Hill; INTERNATIONAL BOOK COMPANY, 1982 
2. Kyuichiro Washizu, Variational Methods in Elasticity and Plasticity, Pergamon Press: New 

York, 1965 
3. R. H. Gallagher, Finite Element Analysis Fundamentals, Prentice-Hall, Inc., Englewood 

Cliffs, N. j. 1975 
4. T. Kawai, The Force Method Revisited, Int. J. Num. Mech. Engng., 47, 275-286, (2000) 
5. T. Kawai, Development of a Nodeless and consistent Finite Element Method - force 

method forever -, Proc. of the Fifth World Congress of Computational Mechanics, July 
7-12, 2002 Vienna, Austria 

 


